Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. Dephosphorylation is a prerequisite for degradation of damaged D1.
نویسندگان
چکیده
Light dependence and kinetics of reversible phosphorylation of the D1 reaction center protein of Photosystem II was studied in pumpkin leaves. At growth light, maximal phosphorylation of D1 was observed after illumination of 1 h, with higher phosphorylation rates at stronger irradiances. 70-85% of D1 became phosphorylated, corresponding to the proportion of the protein in appressed thylakoid membranes. Comparison of the kinetics of D1 phosphorylation and photoinactivation of Photosystem II revealed that D1 phosphorylation became saturated before any significant photoinhibition of Photosystem II could be detected. Dephosphorylation of D1 in both dim light and darkness was determined in leaves preilluminated with high light for various periods. Similar rates of D1 dephosphorylation were observed after short preillumination conditions that induce no significant loss of functional Photosystem II centers. In contrast, photodamage to Photosystem II centers significantly decreased the dephosphorylation rate of D1 in darkness, and no dephosphorylation occurred in leaves containing mainly damaged Photosystem II centers. Darkness also blocked the degradation of damaged D1 after photoinhibitory preillumination. Degradation of damaged D1 could be prevented even in dim light by sodium fluoride, an inhibitor of protein phosphatases, indicating that dephosphorylation is a prerequisite for D1 proteolysis. We conclude that in higher plants (i) high light induced photodamage to Photosystem II occurs in the centers containing phosphorylated D1. (ii) Dephosphorylation of phosphorylated and photodamaged D1 is associated with the repair cycle of inactivated Photosystem II and is a light-dependent reaction in vivo. (iii) Dephosphorylation of D1 in functional Photosystem II centers, however, occurs rapidly and independent of light. We suggest that two reversible phosphorylation cycles with spatially segregated protein phosphatases are involved in dephosphorylation of functional and damaged phosphorylated D1, respectively.
منابع مشابه
Significance of the photosystem II core phosphatase PBCP for plant viability and protein repair in thylakoid membranes.
PSII undergoes photodamage, which results in photoinhibition-the light-induced loss of photosynthetic activity. The main target of damage in PSII is the reaction center protein D1, which is buried in the massive 1.4 MDa PSII holocomplex. Plants have evolved a PSII repair cycle that degrades the damaged D1 subunit and replaces it with a newly synthesized copy. PSII core proteins, including D1, a...
متن کاملThe exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803.
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII bio...
متن کاملRevisiting the photosystem II repair cycle
The ability of photosystem (PS) II to catalyze the light-driven oxidation of water comes along with its vulnerability to oxidative damage, in particular of the D1 core subunit. Photodamaged PSII undergoes repair in a multi-step process involving (i) reversible phosphorylation of PSII core subunits; (ii) monomerization and lateral migration of the PSII core from grana to stroma thylakoids; (iii)...
متن کاملDephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature.
Kinetic studies of protein dephosphorylation in photosynthetic thylakoid membranes revealed specifically accelerated dephosphorylation of photosystem II (PSII) core proteins at elevated temperatures. Raising the temperature from 22 degrees C to 42 degrees C resulted in a more than 10-fold increase in the dephosphorylation rates of the PSII reaction center proteins D1 and D2 and of the chlorophy...
متن کاملSlow degradation of the d1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition.
Photoinhibition of photosystem II (PSII) electron transport and subsequent degradation of the D1 protein were studied in pumpkin (Cucurbita pepo L.) leaves developed under high (1000 mumol m(-2) s(-1)) and low (80 mumol m(-2) s(-1)) photon flux densities. The low-light leaves were more susceptible to high light. This difference was greatly diminished when illumination was performed in the prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 25 شماره
صفحات -
تاریخ انتشار 1996